Bài toán. Cho các số thực dương $a,\,b,\,c$ thay đổi và thỏa mãn điều kiện ràng buộc\[a(a+1)+b(b+1)+c(c+1)\le 18.\]Tìm giá trị nhỏ nhất của biểu thức\[P = \frac{1}{{1 + a + b}} + \frac{1}{{1 + b + c}} + \frac{1}{{1 + c + a}}.\]

Read the rest of this entry »

Tags:

Cho số nguyên dương $m$, và $n$ (với $n>1$) số nguyên khác $0$ là $x_1,\,x_2,\,\ldots ,\,x_n$. Biết rằng số nguyên tố $p$ thỏa mãn $p^m\mid x_1$ còn $x_k$ không chia hết cho $p^m$ với mọi $k>1$. Chứng minh rằng:\[\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} + \ldots + \frac{1}{{{x_n}}} \notin \mathbb Z.\]

Cho các số nguyên dương $a,b,c$ thỏa mãn $\gcd (a,\,b,\,c)=1$ và $$a\mid bc,\;b\mid ca,\;c\mid ab.$$ Chứng minh rằng $\dfrac{bc}{a}$ là một số chính phương.

Read the rest of this entry »

Tags: , , , , ,

Bài toán. Cho $a_1,\,a_2,\,\ldots$ là một dãy vô hạn các số nguyên dương. Giả sử tồn tại số nguyên dương $N$ sao cho\[\frac{{{a_1}}}{{{a_2}}} + \frac{{{a_2}}}{{{a_3}}} + \ldots + \frac{{{a_{n – 1}}}}{{{a_n}}} + \frac{{{a_n}}}{{{a_1}}} \in \mathbb Z\quad\forall\,n\ge N.\]Chứng minh rằng tồn tại số nguyên dương $M$ sao cho $a_{m+1}=a_m\;\forall\,m\ge M$.

Lời giải. Với $p$ là một số nguyên tố, trước tiên ta có bổ đề (tính chất của định giá phi Archimedean)\[{v_p}\left( {x + y} \right) \ge \min \left\{ {{v_p}\left( x \right),\, {v_p}\left( y \right)} \right\}\quad\forall\, x,\,y\in\mathbb Q.\] Read the rest of this entry »

Tags: , , , ,

Đây là bài toán 29 trong mã đề 123 mà bộ Dục ra cho học sinh, trong kỳ thi THPT năm 2018. Bài toán này thoạt nhìn chả có gì ghê gớm, bản chất vốn chỉ là một bài tính tích phân đơn giản với nội dung như sau.

Bài toán.  Cho $a,\,b,\,c$ là các số hữu tỷ thỏa mãn\[\int\limits_{16}^{55} {\frac{{dx}}{{x\sqrt {x + 9} }} = a\ln 2 + b\ln 5 + c\ln 11.} \]Mệnh đề nào dưới đây đúng?\[A.\;a+b=-3c,\qquad B.\;a-b=-c,\qquad C.\;a+b=c,\qquad D.\;a+b=3c.\]

Để giải bài toán này, mẹo mực bấm máy thì mình không quan tâm. Nếu phải tính cái tích phân kia, thì mình làm như thế này. Read the rest of this entry »

Tags: , , , ,

Với các số nguyên dương $m,\,n$ cho trước và $a$ là một số nguyên nguyên tố cùng nhau với $m$, xét phương trình đồng dư\begin{align}x^n\equiv a\pmod m,\qquad (1).\end{align}Ở các phần phía trước bao gồm http://songha.maths.vn/khai-niem-thang-du-bac-cao-va-can-theo-modulo/, http://songha.maths.vn/dieu-kien-la-mot-thang-du-bac-cao/ và http://songha.maths.vn/so-cac-thang-du-bac-cao/ thì về cơ bản thì chúng ta đã giải quyết được hai vấn đề, đó là Read the rest of this entry »

Tags: , , , , , , ,

Ở bài viết về điều kiện để là thặng dư bậc cao ở http://songha.maths.vn/dieu-kien-la-mot-thang-du-bac-cao/ , ta đã chỉ ra rằng nếu $m=m_1m_1$ với $m_1,\,m_2\in\mathbb Z^+$ trong đó $\gcd\left(m_1,\,m_2\right)=1$ và $n$ là một số nguyên dương. Khi đó số nguyên $a$ nguyên tố cùng nhau với $m$ và là một thặng dư bậc $n$ theo mod $m$ nếu và chỉ nếu $a$ vừa là thặng dư bậc $n$ theo mod $m_1$ và đồng thời là thặng dư bậc $n$ theo mod $m_2$.

Bây giờ với $a_1,\,a_2$ lần lượt là các thặng dư bậc $n$ theo các mod $m_1,\,m_2$ tương ứng. Lúc đó, lại theo định lý thặng dư Trung Hoa sẽ tồn tại duy nhất $a\in\mathcal U_m$ sao cho Read the rest of this entry »

Tags: , , , , , , ,

Cho các số nguyên dương $m,\,n$ và số nguyên $a$ thỏa mãn $\gcd(a,\,m)=1$, giả sử phân tích ra thừa số nguyên tố của $m$ là\[m=p_1^{k_1}p_2^{k_2}\ldots p_t^{k_t}.\]Trong đó, $k_i\in\mathbb{Z}^+,\,p_i\in\mathbb P,\;\forall\,i=\overline{1,\,t}$ và $p_1<p_2<\ldots<p_t$.

Nếu $a$ là một thặng dư bậc $n$ theo mod $m$, thì từ $a\equiv r^n\pmod m$ với $r$ là một căn bậc $n$ của $a$ theo mod $m$, ta có Read the rest of this entry »

Tags: , , , , , ,

Cho trước các số nguyên dương $m,\,n$, và số nguyên $a$ thỏa mãn $\gcd(a,\,m)=1$. Khi đó, với việc biết cấp của $a$ theo mod $m$ là $\text{ord}_m(a)=h$ chúng ta đã có được thuật toán tìm số dư $r$ của $a^n$ khi chia $m$ đó là.

  •  Tìm số dư $r_0$ của $n$ khi đem chia cho $h$.
  •  Tìm số dư $r$ khi đem $a^{r_0}$ chia cho $m$.

Công việc này dù rắc rối hơn đôi chút, nhưng cũng giống như vấn đề ở đại số sơ cấp đó là tính giá trị của lũy thừa $a^n$ khi biết trước $a$ và $n$. Read the rest of this entry »

Tags: , , , , ,

Rất nhiều vấn đề trong Số Học liên quan đến sự tồn tại vô hạn các số nguyên tố trong một dãy nguyên. Ví dụ như định lý Dirichlet, các số nguyên tố Fermat hay các số nguyên tố Mersene. Một vấn đề đơn giản hơn, đó là nói đến các ước nguyên tố của phần tử trong dãy. Bài viết này bàn về khái niệm ước nguyên tố của một dãy số nguyên, và tập các ước nguyên tố đó. Phạm vi bài viết là ở mức độ các bài toán sơ cấp, mặc dù vấn đề trong bài vẫn được nghiên cứu ở lý thuyết Số cao cấp. Read the rest of this entry »

Tags: , , , , , , ,

Suốt dọc từ đây của bài giảng này đến hết, mỗi khi viết $\text{ord}_m(a)$ ta sẽ mặc định các điều kiện là $m\in\mathbb Z^+,\;a\in\mathbb Z$ và $\gcd(a;\,m)=1$. Tính chất đầu tiên của mục này, sẽ cho ta thấy ngay tác dụng của cấp trong việc tìm số dư của lũy thừa bậc cao.

Tính chất 1. Với các số mũ $k;\,l\in\mathbb N$ và $\text{ord}_m(a)=d$ khi đó đồng dư $a^k\equiv a^l\pmod m$ xảy ra khi và chỉ khi xảy ra đồng dư $k\equiv l\pmod d$.

Chứng minh. Không mất tính tổng quát, ta giả sử $k\ge l$. Trước tiên ta đi chứng minh rằng hễ $k\equiv l\pmod d$ thì $a^k\equiv a^l\pmod m$, thật vậy. Vì $k\equiv l\pmod d$ nên $k=l+qd$ với $q\in\mathbb N$ khi ấy do $a^d\equiv 1\pmod m$ nên Read the rest of this entry »

Tags: , , , , , ,

« Older entries