Định Lý Bézout

You are currently browsing articles tagged Định Lý Bézout.

Chọn $x_1;\,x_2;\, \ldots ;\, x_n$ là $n$ số nguyên bất kì. Ta kí hiệu $\min\left(x_1;\,x_2;\, \ldots ;\, x_n\right)$ và $\max\left(x_1;\,x_2 \ldots ;\, x_n\right)$ lần lượt là số nhỏ nhất và số lớn nhất trong các số $x_1;\,x_2;\, \ldots ;\, x_n$ đó. Định lý nêu ra sau đây là hiển nhiên.

Định lý 6.1. Với $a,\,b$ là hai số nguyên dương và $p_1,\,p_2,\,\ldots,p_s$ là những ước nguyên tố thì, lúc đó ta có thể viết
\[\begin{align*}
a &= p_1^{{a_1}}p_2^{{a_2}} \ldots p_s^{{a_s}},\quad {a_v} \ge 0,\\ \\
b &= p_1^{{b_1}}p_2^{{b_2}} \ldots p_s^{{b_s}},\quad {b_v} \ge 0,\,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {p_1} < {p_2} < \ldots {p_s}.
\end{align*}\] Read the rest of this entry »

Tags: , , , , ,

Trước tiên, ta quan tâm đến khẳng định sau đây.

Định lý 5.1. Với p là một số nguyên tố, và $p \mid ab$. Lúc đó hoặc $p \mid a$ hoặc $p \mid b$.

Chứng minh. Nếu $p \nmid a$, lúc đó $\gcd(a,\,p)=1$ . Từ định lý 4.4 ở bài viết Modulus của các số nguyên, sẽ tồn tai hai số nguyên $x,\,y$ thoả mãn \[xa+yb=1,\]từ đó ta có được\[b=xab+ybp.\]Lại  có $p\mid ab$ và $x,\,b\in\mathbb Z$ nên $p\mid b$. Read the rest of this entry »

Tags: , , , ,

Một modulus được hiểu là một tập hợp các số nguyên với tính đóng với những phép toán cộng và trừ. Nói cách khác, nếu $m,\,n$ là các số nguyên ở trong một modulus thì $m+n$ và $m-n$ cũng thuộc modulus đó. Một modulus chỉ bao gồm duy nhất số $0$ được gọi là modulus $0$. Một tập hợp các số nguyên có dạng một modulus cũng giống như tập của các số nguyên là bội của một số nguyên $k$ cố định.

Định lý 4.1.  Chúng ta có một số tính chất cơ bản như sau về modulus

  1.  Số $0$ thuộc về tất cả các modulus
  2.  Với $a,\,b$ cùng thuộc về một modulus và $m,\,n $ là các số nguyên, lúc đó $am+bn$ cũng thuộc về modulus.

Read the rest of this entry »

Tags: , , , , ,