Số Nguyên Tố

You are currently browsing articles tagged Số Nguyên Tố.

Việc khẳng định sự tồn tại một số hoàn hảo lẻ là một bài toán khó và rất nổi tiếng. Ở chương trước ta thấy xác định một số hoàn hảo chẵn sẽ quy về việc xác định những số nguyên tố Mersenne, đó là số nguyên tố dạng $2^{n}-1,$ từ đó ta có sự tương ứng giữa những số nguyên tố Mersenne và  những số hoàn hảo chẵn. Tuy nhiên, việc khẳng định có tồn tại vô hạn số nguyên tố Mersenne hay không lại là một vấn đề rất khó và chưa có lời giải trong lý thuyết số.

 
Định lý 10.1. Nếu $n>1$ và $a^{n}-1$ là một số nguyên tố, thì lúc đó $a=2$ và $n$ là một số nguyên tố. Read the rest of this entry »

Tags: , , , ,

Ta đã biết một vài số nguyên tố đầu tiên, đó là các số sau \[2,\,3,\,5,\,11,\ldots.\]
Bây giờ nếu $N$ là một số không quá lớn, thì sẽ không khó để xác định tất cả các số nguyên tố không vượt quá $N$. Phương pháp đó gọi là sàng Eratosthenes. Cơ sở của nó là, nếu $n \le N$ và $n$ không phải là số nguyên tố thì $n$ phải là bội của một số nguyên tố không vượt quá giá trị $\sqrt N$.

Đầu tiên ta liệt kê tất cả các số nguyên giữa $2$ và $N$ \[2,\,3,\,4,\,5,\ldots.\] Chúng ta sắp xếp chúng lại như sau: Read the rest of this entry »

Tags: , ,

Chúng ta chia số nguyên dương làm ba loại:

  1.  Số nguyên dương duy nhất có đúng một ước nguyên dương, đó là số $1$.
  2. Số nguyên dương có đúng hai ước nguyên dương là $1$ và chính nó, đó là những số nguyên tố. Về bản chất, đó là các số không có ước thực sự.
  3. Các số có nhiều hơn hai ước số nguyên dương, và nghĩa là nó có ước thực sự. Những số đó gọi là hợp số. Ở bài viết này, chúng ta thường kí hiệu số nguyên tố là $p$.

Để ý rằng, một số nguyên được gọi là chẵn hoặc lẻ tuỳ thuộc vào việc chúng chia hết cho $2$ hoặc không. Rõ ràng, số nguyên dương chẵn lớn hơn $2$ không thể là số nguyên tố. Điều đó cũng đồng nghĩa với việc có duy nhất một số nguyên tố chẵn, đó là số $2$.

Sau đây là một khẳng định rất quan trọng. Read the rest of this entry »

Tags: , , ,