Nghiệm Fermat

You are currently browsing articles tagged Nghiệm Fermat.

Vào năm 1828 Abel đưa ra một câu hỏi là liệu có số nguyên $a$ và số nguyên tố $p$ nào thoả $a^{p-1}\equiv 1 \pmod p^2?$. Theo Jacobi : $p\le 37$ lúc đó đồng dư thức trên có những nghiệm $(p,\,a)$ là \[(11,\,3),\,\quad (11,\,9),\,\quad (29,\,14),\,\quad (37,\,18).\] Qua quá trình nghiên cứu định lý cuối cùng của Fermat đã thúc đẩy vấn đề này. Định lý như sau: Với $p$ là mộ số nguyên tố lẻ. Nếu tồn tại những số nguyên $x,\,y,\,z$ thoả $x^p+y^p+z^p=0,\,p\nmid xyz$, lúc đó \[2^{p-1}\equiv 1\pmod{p^2},(1)\] Read the rest of this entry »

Tags: , , ,