Hình Học Phẳng

You are currently browsing articles tagged Hình Học Phẳng.

Bài 1. Cho dãy số $\left\{x_n\right\}_{n\in\mathbb Z^+}$ xác định bởi công thức truy hồi $x_1=2$ và
\[{x_{n + 1}} = \sqrt {{x_n} + 8} – \sqrt {{x_n} + 3}\quad\forall\,n\in\mathbb Z^+ .\]

  1. Chứng minh rằng dãy đã cho hội tụ và tính giới hạn.
  2. Chứng minh rằng
    \[n \le {x_1} + {x_2} + \ldots + {x_n} \le n + 1\quad\forall\,n\in\mathbb Z^+ .\]link: http://mathscope.org/showthread.php?t=51561

Read the rest of this entry »

Tags: , , , , , , , , ,

Đây là hai bài toán hình học trong đề thi VMO 2018, hai bài được cho trong hai ngày thi và là những bài toán khó nhất là bài 2.

Bài ngày 1. Cho tam giác nhọn không cân $ABC$ với $D$ là một điểm trên cạnh $BC$ . Lấy điểm $E$ trên cạnh $AB$ và điểm $F$ trên cạnh $AC$ sao cho $\widehat{DEB}=\widehat{DFC}$. Các đường thẳng DF,DE lần lượt cắt $AB,AC$ tại $M,N$. Gọi $(I_1),(I_2)$ tương ứng là các đường tròn ngoại tiếp tam giác $DEM,DFN$. Kí hiệu $(J_1)$ là đường tiếp xúc trong với $(I_1)$ tại $D$ và tiếp xúc với $AB$ tại $K$, $(J_2)$ là đường tròn tiếp xúc trong với $(I_2)$ tại $D$ và tiếp xúc với $AC$ tại $H$, $P$ là giao điểm của $(I_1)$ và $(I_2)$, $Q$ là giao điểm của $(J_1)$ và $(J_2)$ ($P,Q$ khác $D$) Read the rest of this entry »

Tags: , , , ,