Định Lý Thặng Dư Trung Hoa

You are currently browsing articles tagged Định Lý Thặng Dư Trung Hoa.

Với các số nguyên dương $m,\,n$ cho trước và $a$ là một số nguyên nguyên tố cùng nhau với $m$, xét phương trình đồng dư\begin{align}x^n\equiv a\pmod m,\qquad (1).\end{align}Ở các phần phía trước bao gồm http://songha.maths.vn/khai-niem-thang-du-bac-cao-va-can-theo-modulo/, http://songha.maths.vn/dieu-kien-la-mot-thang-du-bac-cao/ và http://songha.maths.vn/so-cac-thang-du-bac-cao/ thì về cơ bản thì chúng ta đã giải quyết được hai vấn đề, đó là Read the rest of this entry »

Tags: , , , , , , ,

Ở bài viết về điều kiện để là thặng dư bậc cao ở http://songha.maths.vn/dieu-kien-la-mot-thang-du-bac-cao/ , ta đã chỉ ra rằng nếu $m=m_1m_1$ với $m_1,\,m_2\in\mathbb Z^+$ trong đó $\gcd\left(m_1,\,m_2\right)=1$ và $n$ là một số nguyên dương. Khi đó số nguyên $a$ nguyên tố cùng nhau với $m$ và là một thặng dư bậc $n$ theo mod $m$ nếu và chỉ nếu $a$ vừa là thặng dư bậc $n$ theo mod $m_1$ và đồng thời là thặng dư bậc $n$ theo mod $m_2$.

Bây giờ với $a_1,\,a_2$ lần lượt là các thặng dư bậc $n$ theo các mod $m_1,\,m_2$ tương ứng. Lúc đó, lại theo định lý thặng dư Trung Hoa sẽ tồn tại duy nhất $a\in\mathcal U_m$ sao cho Read the rest of this entry »

Tags: , , , , , , ,

Rất nhiều vấn đề trong Số Học liên quan đến sự tồn tại vô hạn các số nguyên tố trong một dãy nguyên. Ví dụ như định lý Dirichlet, các số nguyên tố Fermat hay các số nguyên tố Mersene. Một vấn đề đơn giản hơn, đó là nói đến các ước nguyên tố của phần tử trong dãy. Bài viết này bàn về khái niệm ước nguyên tố của một dãy số nguyên, và tập các ước nguyên tố đó. Phạm vi bài viết là ở mức độ các bài toán sơ cấp, mặc dù vấn đề trong bài vẫn được nghiên cứu ở lý thuyết Số cao cấp. Read the rest of this entry »

Tags: , , , , , , ,

Định lý 7.1. Với $m$ là bội chung nhỏ nhất của $m_1$ và $m_2$. Điều kiện để các đồng dư đồng thời sau \[x\equiv a_1\pmod{m_1},\] \[x\equiv a_2\pmod{m_2},\]  có nghiệm là

\[\gcd\left( m_1,\,m_2\right)\mid a_1-a_2.\]

Nếu $(1)$ cố định, lúc đó nghiệm của $(1)$ là duy nhất mod $m$.

Chứng minh. Đặt $\gcd\left(m_1,\,m_2\right)=d$. Nếu hai đồng dư đồng thời đó có một nghiệm, lúc đó Read the rest of this entry »

Tags: , ,

Với $m$ là một số nguyên dương cho trước và $f(x)=a_nx^n+\ldots+a_1x+a_0$ là một đa thức hệ số nguyên, chúng ta sẽ nghiên cứu phương trình đồng dư\[f(x)\equiv 0\pmod m.\]Nhận xét rằng, nếu $x_0$ là một nghiệm của phương trình đồng dư trên thì với mọi số nguyên $t$ ta có $x_0+mt$ cũng là nghiệm. Điều đó cho thấy hễ $x_0$ là một nghiệm, thì lớp thặng dư sinh bởi $x_0$ cũng ta nghiệm. Bởi vậy, khi ta nói đến số nghiệm của một phương trình đồng dư thì ta hiểu đó là số các lớp thặng dư khác nhau thoả mãn phương trình. Read the rest of this entry »

Tags: , , , , ,

Dưới đây là lời giải cho một bài toán rất khó về tính chất số học của đa thức.

Bài toán. Tìm tất cả các đa thức $P(x)\in\mathbb Z[x]$ và $m\in\mathbb Z^+$, sao cho $m+2^nP(n)$ là số chính phương với mọi số nguyên dương $n$.

Lời giải.  Giả sử $P(x)$ và $m$ là đa thức và số nguyên dương thỏa mãn, ta có 2 nhận xét sau:

Nhận xét 1. Nếu $p$ là ước nguyên tố lẻ của $m+2^nP(n)$ thì $p\mid P'(n).$

Chứng minh. Ta có $v_p\left(m+2^nP(n)\right)\ge 2$, theo Fermat bé thì\[m + {2^n}P\left( n \right) \equiv m + {2^{n + p\left( {p – 1} \right)}}P\left( {n + p\left( {p – 1} \right)} \right)\pmod{p}.\]Vì thế ta lại có $v_p\left(m+2^{n+p(p-1)}P\left(n+p(p-1)\right)\right)\ge 2$, theo bổ đề tiếp tuyến và định lý Euler ta có Read the rest of this entry »

Tags: , , , , , ,