Bài giảng này viết về khái niệm tập hợp, một khái niệm nền móng và cơ bản của Toán Học hiện đại. Khái niệm tập hợp giữ vai trò đặc biệt quan trọng trong Toán Học, không chỉ vì cho đến nay, lý thuyết Tập Hợp đã trở thành một nhánh rộng rãi và phong phú, mà còn vì từ sự xuất hiện từ chừng hai thế kỷ trước, lý thuyết Tập Hợp đã và vẫn đang có những ảnh hưởng sâu sắc đến toàn bộ Toán Học. Ở phạm vi bài viết này, tôi chỉ đưa ra các khái niệm cơ bản thuần túy, cùng các phép toán trên tập cơ bản nhất như giao, hợp, hiệu các tập. Một mục đích nữa của bài giảng, là cung cấp nền tảng khởi đầu cho môn Tổ Hợp. Vì thế, nên trong bài giảng có bàn đến các quy tắc xác định lực lượng tập hợp như nguyên lý cộng, bù trừ và nguyên lý nhân. Read the rest of this entry »
You are currently browsing articles tagged Tổ Hợp.
Cuộc sống, được chúng ta nhận thức qua sự hiện hữu và vận động của các thành tố trong nó. Khi tồn tại để vận động và phát triển, các đối tượng tương tác với nhau theo những quy luật được xác định, để rồi có những ảnh hưởng đến giá trị về lượng và chất tương ứng. Chính sự tương tác ảnh hưởng qua lại giữa các đối tượng của cuộc sống, giúp chúng ta nhận thức được bản chất các đối tượng đó theo nhiều góc nhìn. Read the rest of this entry »
Tags: Ánh Xạ, Đại Số, Dãy Số, Giải Tích, Hàm Đặc Trưng, Hàm Số, Hình Học, Nhóm, Phép Toán Hai Ngôi, Phiếm Hàm, Số Học, Tổ Hợp
Với $n$ là một số nguyên dương và $p$ là một số nguyên tố. Khi phân tích $n!$ ra thừa số nguyên tố, ta quan tâm đến bậc của $p$ trong phân tích đó. Và có định lý của Legendre như sau.
Định lý 11.1. Với $p$ là số nguyên tố. Lúc đó số mũ đúng của $p$ trong phân tích ra thừa số nguyên tố của $n!$ là \[v_p\left(n!\right)=\left\lfloor {\dfrac{n}{{{p^1}}}} \right\rfloor + \left\lfloor {\dfrac{n}{{{p^2}}}} \right\rfloor + \left\lfloor {\dfrac{n}{{{p^3}}}} \right\rfloor + \ldots \]
Để ý rằng, chỉ có hữu hạn các số hạng khác không trong tổng trên. Read the rest of this entry »
Tags: Công Thức Legendre, Định Giá p-adic, Số Học, Tổ Hợp
Định lý 7.1. Cho $N$ đối tượng, và giả sử rằng có $N_{\alpha}$ đối tượng trong chúng mang tính chất $\alpha$, $N_{\beta}$ đối tượng trong chúng mang tính chất $\beta,\,\ldots,$ $N_{\alpha\beta}$ trong chúng mang cả hai tính chất $\alpha\beta,\,\ldots,\,N_{\alpha\beta\gamma}$ trong chúng mang cả ba tính chất $\alpha,\,\beta $ và $\gamma,\,\ldots$. Lúc đó số các đối tượng không có bất kì tính chất nào được nêu trên được tính bởi công thức
\[\begin{align*}
N &- {N_\alpha } – {N_\beta } – \ldots \\
&+ {N_{\alpha \beta }} +N_{\alpha \gamma } \ldots \\
&- {N_{\alpha \beta \gamma }} – \ldots \\
&+ \ldots – \ldots
\end{align*}; \qquad (A).\] Read the rest of this entry »
Tags: GCD, LCM, Nguyên Lý Bù Trừ, Số Học, Tổ Hợp
Bài 1. Cho dãy số $\left\{x_n\right\}_{n\in\mathbb Z^+}$ xác định bởi công thức truy hồi $x_1=2$ và
\[{x_{n + 1}} = \sqrt {{x_n} + 8} – \sqrt {{x_n} + 3}\quad\forall\,n\in\mathbb Z^+ .\]
- Chứng minh rằng dãy đã cho hội tụ và tính giới hạn.
- Chứng minh rằng
\[n \le {x_1} + {x_2} + \ldots + {x_n} \le n + 1\quad\forall\,n\in\mathbb Z^+ .\]link: http://mathscope.org/showthread.php?t=51561
Tags: Bất Đẳng Thức, Đại Số, Dãy Số, Dãy Số Nguyên, Giải Tích, Giới Hạn, Hàm Số, Hình Học Phẳng, Số Học, Tổ Hợp
Bài giảng này, là một bài giảng nói đến những vấn đề cơ bản nhất của Tổ Hợp. Cái môn học này nghe nhiều người nói là rất dễ, vì nó đời. Cơ mà với mình (tức là tác giả), thì mình thấy môn này nó khó khắm-khó khú, đại khái là khó lắm lắm… Bởi vậy, mang tiếng là viết để vác đi dạy, nhưng mình coi là chép lại để đi học. Mình cố chép những thứ dễ nhất, liên hệ đến những hình tượng đơn giản nhất, và cố gằng diễn tả nó bằng thứ ngôn ngữ … nghiêm nghị nhất :D. Mình mong, nhận được những góp ý, nhận xét chân thành từ các bạn.
Read the rest of this entry »
Phản Hồi