Định Lý Fermat bé

You are currently browsing articles tagged Định Lý Fermat bé.

Rất nhiều vấn đề trong Số Học liên quan đến sự tồn tại vô hạn các số nguyên tố trong một dãy nguyên. Ví dụ như định lý Dirichlet, các số nguyên tố Fermat hay các số nguyên tố Mersene. Một vấn đề đơn giản hơn, đó là nói đến các ước nguyên tố của phần tử trong dãy. Bài viết này bàn về khái niệm ước nguyên tố của một dãy số nguyên, và tập các ước nguyên tố đó. Phạm vi bài viết là ở mức độ các bài toán sơ cấp, mặc dù vấn đề trong bài vẫn được nghiên cứu ở lý thuyết Số cao cấp. Read the rest of this entry »

Tags: , , , , , , ,

Suốt dọc từ đây của bài giảng này đến hết, mỗi khi viết $\text{ord}_m(a)$ ta sẽ mặc định các điều kiện là $m\in\mathbb Z^+,\;a\in\mathbb Z$ và $\gcd(a;\,m)=1$. Tính chất đầu tiên của mục này, sẽ cho ta thấy ngay tác dụng của cấp trong việc tìm số dư của lũy thừa bậc cao.

Tính chất 1. Với các số mũ $k;\,l\in\mathbb N$ và $\text{ord}_m(a)=d$ khi đó đồng dư $a^k\equiv a^l\pmod m$ xảy ra khi và chỉ khi xảy ra đồng dư $k\equiv l\pmod d$.

Chứng minh. Không mất tính tổng quát, ta giả sử $k\ge l$. Trước tiên ta đi chứng minh rằng hễ $k\equiv l\pmod d$ thì $a^k\equiv a^l\pmod m$, thật vậy. Vì $k\equiv l\pmod d$ nên $k=l+qd$ với $q\in\mathbb N$ khi ấy do $a^d\equiv 1\pmod m$ nên Read the rest of this entry »

Tags: , , , , , ,

I. Khái niệm về căn nguyên thủy.

Số nguyên dương $m$ gọi là có căn nguyên thủy khi và chỉ khi tồn tại số nguyên $a$ sao cho $a$ và $m$ nguyên tố cùng nhau và $$\text{ord}_{m}(a)=\varphi(m).$$

II. Điều kiện để có căn nguyên thủy.

Ta xét đến một ví dụ sau Read the rest of this entry »

Tags: , , , , , ,

Chúng ta quan tâm đến khái niệm sau.

Định nghĩa. Một đa thức $f(x)$ với biến $x$ được gọi là Đa thức giá trị nguyên khi và chỉ khi nó nhận giá trị nguyên khi $x$ là số nguyên.

Ví dụ. Các đa thức có hệ số nguyên là những đa thức giá trị nguyên. Tuy nhiên có những đa thức có hệ số không là số nguyên nhưng vẫn là đa thức giá trị nguyên, chẳng hạn đa thức sau đây \[\dbinom{x}{r} = \dfrac{{x(x – 1) \ldots (x – r + 1)}}{{r!}}.\]Ta kí hiệu $f(x+1)-f(x)=\Delta f(x)$ và có khẳng định sau. Read the rest of this entry »

Tags: , , , , , ,

Trước tiên, ta có được định lý sau.

Định lý. Với $\gcd\left( m,\,m’\right)=1$, và để $x$ chạy khắp một hệ thặng dư đầy đủ mod $m$, và $x’$ chạy khắp hệ thặng dư đầy đủ mod $m’$. Lúc đó $mx’+xm’$ chạy khắp hệ thặng dư đầy đủ mod $mm’$.

Chứng minh. Xét $mm’$ số $mx’+xm’$. Nếu \[mx’+m’x\equiv my’+m’y\pmod{mm’},\] Read the rest of this entry »

Tags: , , , ,

Vào năm 1828 Abel đưa ra một câu hỏi là liệu có số nguyên $a$ và số nguyên tố $p$ nào thoả $a^{p-1}\equiv 1 \pmod p^2?$. Theo Jacobi : $p\le 37$ lúc đó đồng dư thức trên có những nghiệm $(p,\,a)$ là \[(11,\,3),\,\quad (11,\,9),\,\quad (29,\,14),\,\quad (37,\,18).\] Qua quá trình nghiên cứu định lý cuối cùng của Fermat đã thúc đẩy vấn đề này. Định lý như sau: Với $p$ là mộ số nguyên tố lẻ. Nếu tồn tại những số nguyên $x,\,y,\,z$ thoả $x^p+y^p+z^p=0,\,p\nmid xyz$, lúc đó \[2^{p-1}\equiv 1\pmod{p^2},(1)\] Read the rest of this entry »

Tags: , , ,

 1. Khái niệm

Với $m$ là một số nguyên khác $0$. Nếu $a-b$ là bội của $m$, lúc đó ta nói $a$  đồng dư với $b\mod m$ và ta viết $a\equiv b\pmod m$. Nếu $a$ không đồng dư với $b$ mod $m$, lúc đó ta viết $a\not\equiv b\pmod m$.

Ví dụ.  $31\equiv -9\pmod {10}$.

Nếu $a,\,b$ đều là các số nguyên lúc đó ta luôn có $a\equiv b\pmod 1$.

Khái niệm của đồng dư xảy ra thường xuyên và và trong ngay cả cuộc sống hằng ngày của chúng ta, một ví dụ đó là để xác định ngày trong tuần chúng ta sẽ xét đồng dư $\mod 7$. Trong lịch ở đất nước chúng tôi ta đếm số năm bằng việc xét đồng dư $\mod 60$. Read the rest of this entry »

Tags: , , , , ,