Tiêu Chuẩn Eisenstein

You are currently browsing articles tagged Tiêu Chuẩn Eisenstein.

Trước tiên ta có khẳng định sau

Định lý 13.1.Với $g(x)$ và $h(x)$ là hai đa thức với các hệ số nguyên, trong đó:
\[\begin{align*}
g(x)=&a_lx^l+\ldots+a_0,\,\quad\quad a_l\ne 0\\
h(x)=&b_mx^m+\ldots+b_0,\,\quad\; b_m\ne 0
\end{align*}\]
Giả sử rằng $g(x)h(x)=c_{l+m}x^{l+m}+\ldots+c_0$, khi đó \[\gcd\left( a_1,\,a_2,\,\ldots,\,a_0\right).\gcd\left( b_1,\,b_2,\,\ldots,\,b_0\right) =\gcd\left( c_{l+m},\,c_{l+m-1},\,\ldots,\,c_0\right). \]

Chứng minh. Ta có thể coi $\gcd\left( a_1,\,a_2,\,\ldots,\,a_0\right)=\gcd\left( b_1,\,b_2,\,\ldots,\,b_0\right)=1$. Giả sử $p$ là một ước nguyên tố của $\gcd\left( c_{l+m},\,c_{l+m-1},\,\ldots,\,c_0\right)$ và Read the rest of this entry »

Tags: , , , , , , ,